Seawater Strontium Isotopes, Oceanic Anoxic Events, and Seafloor Hydrothermal Activity in the Jurassic and Cretaceous

نویسندگان

  • CHARLES E. JONES
  • HUGH C. JENKYNS
چکیده

There were three negative seawater strontium-isotope excursions (shifts to lower Sr/Sr values) during the Jurassic and Cretaceous that were of relatively short duration (5-13 my) and showed a relatively quick recovery to pre-excursion Sr/Sr ratios. These excursions occurred in the Pliensbachian-Toarcian (Early Jurassic), Aptian-Albian, and Cenomanian-Santonian (Early and Late Cretaceous respectively). Each excursion coincided closely in time with an Oceanic Anoxic Event (OAE) marked by sediments unusually rich in organic carbon. The Jurassic OAE occurred at the end of the strontium-isotope excursion, whereas the two Cretaceous OAEs occurred at the onset of the accompanying strontium-isotope excursions. The possible causes of these excursions were evaluated by successively examining the changes in the riverine strontium fluxes, riverine Sr/Sr ratios, or hydrothermal strontium fluxes required to produce each excursion. A range of seawater strontium budgets was used to encompass the uncertainties in modern and ancient cycles. To produce the excursions, we calculate that the riverine strontium fluxes would have had to decrease by 6 to 15 percent or the fluvial Sr/Sr ratios by 0.00019 to 0.00046. The uncertainties largely stem from the assumed magnitude of the hydrothermal strontium flux at the onset of each excursion. Alternatively, increases in sea-floor hydrothermal activity of 7 to 104 percent could also have produced the strontium-isotope excursions. This large range is due mostly to uncertainties in the relative flux of strontium from axial high-temperature hydrothermal systems and low-temperature off-axis systems. Only a small portion of this range stems from uncertainties in the riverine strontium terms. The possible causes of the excursions were further evaluated by examining several geologic factors that could have affected riverine strontium, including climate change, sealevel, and the eruption of flood basalts. We conclude that neither variations in riverine strontium fluxes nor in Sr/Sr ratios is the likely cause of the strontiumisotope excursions. The most probable explanation is increased rates of hydrothermal activity related to increased ocean-crust production at the mid-ocean ridges. The close correlation in time between the strontium-isotope excursions and the major Oceanic Anoxic Events (OAEs) is compatible with a causal linkage. We propose that increased ocean-crust production led to enhanced CO2 outgassing and global warming, which in turn led to several processes that acted to make surface ocean waters more productive. However, because OAEs did not occur throughout the proposed periods of enhanced hydrothermal activity, it appears that these processes only preconditioned the oceans for the OAEs: sealevel rise may have been the final trigger. This model explains why all three OAEs did not occur at the same time relative to the onset of excess hydrothermal activity and why OAEs are not associated with every sealevel rise documented in the stratigraphic record.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of paleoseawater composition on hydrothermal exchange in midocean ridges.

Variations in the Mg, Ca, Sr, and SO4 concentrations of paleoseawater can affect the chemical exchange between seawater and oceanic basalt in hydrothermal systems at midocean ridges (MOR). We present a model for evaluating the nature and magnitude of these previously unappreciated effects, using available estimates of paleoseawater composition over Phanerozoic time as inputs and 87Sr/86Sr of op...

متن کامل

Oceanic anoxic events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous

[1] Mid-Cretaceous (Barremian-Turonian) plankton preserved in deep-sea marl, organic-rich shale, and pelagic carbonate hold an important record of how the marine biosphere responded to shortand long-term changes in the ocean-climate system. Oceanic anoxic events (OAEs) were short-lived episodes of organic carbon burial that are distinguished by their widespread distribution as discrete beds of ...

متن کامل

Constraining the rate of oceanic deoxygenation leading up to a Cretaceous Oceanic Anoxic Event (OAE-2: ~94 Ma)

The rates of marine deoxygenation leading to Cretaceous Oceanic Anoxic Events are poorly recognized and constrained. If increases in primary productivity are the primary driver of these episodes, progressive oxygen loss from global waters should predate enhanced carbon burial in underlying sediments-the diagnostic Oceanic Anoxic Event relic. Thallium isotope analysis of organic-rich black shale...

متن کامل

Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world.

The best-documented example of rapid climate change that characterized the so-called 'greenhouse world' took place at the time of the Palaeocene-Eocene boundary: introduction of isotopically light carbon into the ocean-atmosphere system, accompanied by global warming of 5-8 degrees C across a range of latitudes, took place over a few thousand years. Dissociation, release and oxidation of gas hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001